Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Bryan Maldonado Puente
- Hongbin Sun
- Nolan Hayes
- Venugopal K Varma
- Zoriana Demchuk
- Mahabir Bhandari
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Achutha Tamraparni
- Adam Aaron
- Andre O Desjarlais
- Catalin Gainaru
- Charles D Ottinger
- Gina Accawi
- Govindarajan Muralidharan
- Gurneesh Jatana
- Ilias Belharouak
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Natasha Ghezawi
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rose Montgomery
- Ruhul Amin
- Sergey Smolentsev
- Stephen M Killough
- Steven J Zinkle
- Thien D. Nguyen
- Thomas R Muth
- Venkatakrishnan Singanallur Vaidyanathan
- Vishaldeep Sharma
- Yanli Wang
- Yifang Liu
- Ying Yang
- Yutai Kato
- Zhenglai Shen

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

We’ve developed a more cost-effective cable driven robot system for installing prefabricated panelized building envelopes. Traditional cable robots use eight cables, which require extra support structures, making setup complex and expensive.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.