Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Hongbin Sun
- Venkatakrishnan Singanallur Vaidyanathan
- Zoriana Demchuk
- Amir K Ziabari
- Bryan Maldonado Puente
- Mahabir Bhandari
- Nolan Hayes
- Philip Bingham
- Ryan Dehoff
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Venugopal K Varma
- Vincent Paquit
- Achutha Tamraparni
- Adam Aaron
- Andre O Desjarlais
- Catalin Gainaru
- Charles D Ottinger
- Gina Accawi
- Gurneesh Jatana
- Ilias Belharouak
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Michael Kirka
- Natasha Ghezawi
- Obaid Rahman
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Stephen M Killough
- Thien D. Nguyen
- Vishaldeep Sharma
- Zhenglai Shen

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Commercial closed-cell insulation foam boards reduce their thermal resistivity by up to 30% due to gas diffusion in and out of foam cells.