Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Diana E Hun
- Soydan Ozcan
- Meghan Lamm
- Som Shrestha
- Halil Tekinalp
- Philip Boudreaux
- Tomonori Saito
- Umesh N MARATHE
- Vlastimil Kunc
- Ahmed Hassen
- Katie Copenhaver
- Steven Guzorek
- Uday Vaidya
- Zoriana Demchuk
- Alex Roschli
- Beth L Armstrong
- Bryan Maldonado Puente
- Dan Coughlin
- Daniel Jacobson
- Georges Chahine
- Mahabir Bhandari
- Matt Korey
- Nolan Hayes
- Pum Kim
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Venugopal K Varma
- Vipin Kumar
- Achutha Tamraparni
- Adam Aaron
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Andre O Desjarlais
- Ben Lamm
- Brian Post
- Cait Clarkson
- Catalin Gainaru
- Charles D Ottinger
- David Nuttall
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gina Accawi
- Gurneesh Jatana
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Karen Cortes Guzman
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kuma Sumathipala
- Mark M Root
- Marm Dixit
- Mengjia Tang
- Nadim Hmeidat
- Natasha Ghezawi
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Peter Wang
- Sana Elyas
- Sanjita Wasti
- Segun Isaac Talabi
- Shajjad Chowdhury
- Stephen M Killough
- Steve Bullock
- Tolga Aytug
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Xianhui Zhao
- Zhenglai Shen

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.