Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Bryan Maldonado Puente
- Nolan Hayes
- Srikanth Yoginath
- Zoriana Demchuk
- James J Nutaro
- Mahabir Bhandari
- Pratishtha Shukla
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Sudip Seal
- Venugopal K Varma
- Achutha Tamraparni
- Adam Aaron
- Ali Passian
- Andre O Desjarlais
- Bruce Moyer
- Catalin Gainaru
- Charles D Ottinger
- Debjani Pal
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- Justin Griswold
- Karen Cortes Guzman
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Mengjia Tang
- Mike Zach
- Nance Ericson
- Natasha Ghezawi
- Padhraic L Mulligan
- Peter Wang
- Sandra Davern
- Stephen M Killough
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Yifang Liu
- Zhenglai Shen

We’ve developed a more cost-effective cable driven robot system for installing prefabricated panelized building envelopes. Traditional cable robots use eight cables, which require extra support structures, making setup complex and expensive.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Commercial closed-cell insulation foam boards reduce their thermal resistivity by up to 30% due to gas diffusion in and out of foam cells.