Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Diana E Hun
- Steve Bullock
- Brian Post
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Amit Shyam
- Beth L Armstrong
- Halil Tekinalp
- Meghan Lamm
- Peeyush Nandwana
- Som Shrestha
- Tomonori Saito
- David Nuttall
- Philip Boudreaux
- Sudarsanam Babu
- Uday Vaidya
- Umesh N MARATHE
- Alex Plotkowski
- Bryan Maldonado Puente
- Dan Coughlin
- Greg Larsen
- James Klett
- Jun Qu
- Katie Copenhaver
- Nadim Hmeidat
- Nolan Hayes
- Rangasayee Kannan
- Thomas Feldhausen
- Trevor Aguirre
- Tyler Smith
- Venugopal K Varma
- Yong Chae Lim
- Zhili Feng
- Zoriana Demchuk
- Adam Stevens
- Alex Roschli
- Blane Fillingim
- Brittany Rodriguez
- Craig Blue
- Georges Chahine
- James A Haynes
- Jian Chen
- Jim Tobin
- John Lindahl
- Lauren Heinrich
- Mahabir Bhandari
- Matt Korey
- Peter Wang
- Pum Kim
- Ryan Dehoff
- Sanjita Wasti
- Segun Isaac Talabi
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Subhabrata Saha
- Sumit Bahl
- Tomas Grejtak
- Wei Zhang
- Xianhui Zhao
- Ying Yang
- Yousub Lee
- Achutha Tamraparni
- Adam Aaron
- Adwoa Owusu
- Akash Phadatare
- Alice Perrin
- Amber Hubbard
- Andre O Desjarlais
- Andres Marquez Rossy
- Ben Lamm
- Bruce A Pint
- Bryan Lim
- Cait Clarkson
- Catalin Gainaru
- Charles D Ottinger
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Dali Wang
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Dustin Gilmer
- Erin Webb
- Ethan Self
- Evin Carter
- Gabriel Veith
- Gerry Knapp
- Gina Accawi
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gurneesh Jatana
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jiheon Jun
- Jordan Wright
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Karen Cortes Guzman
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kuma Sumathipala
- Mark M Root
- Marm Dixit
- Matthew S Chambers
- Mengjia Tang
- Merlin Theodore
- Michael Kirka
- Nancy Dudney
- Natasha Ghezawi
- Nicholas Richter
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Priyanshi Agrawal
- Roger G Miller
- Rose Montgomery
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Stephen M Killough
- Steven J Zinkle
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Tony Beard
- Venkatakrishnan Singanallur Vaidyanathan
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yanli Wang
- Yifang Liu
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato
- Zhenglai Shen

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

We’ve developed a more cost-effective cable driven robot system for installing prefabricated panelized building envelopes. Traditional cable robots use eight cables, which require extra support structures, making setup complex and expensive.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.