Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Benjamin Manard
- Edgar Lara-Curzio
- Ying Yang
- Zoriana Demchuk
- Adam Willoughby
- Bruce A Pint
- Bryan Maldonado Puente
- Cyril Thompson
- Eric Wolfe
- Mahabir Bhandari
- Nolan Hayes
- Rishi Pillai
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Steven J Zinkle
- Venugopal K Varma
- Yanli Wang
- Yutai Kato
- Achutha Tamraparni
- Adam Aaron
- Alexander I Wiechert
- Alice Perrin
- Andre O Desjarlais
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Catalin Gainaru
- Charles D Ottinger
- Charles F Weber
- Charles Hawkins
- Christopher Ledford
- Costas Tsouris
- Frederic Vautard
- Gina Accawi
- Gurneesh Jatana
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Karen Cortes Guzman
- Kuma Sumathipala
- Marie Romedenne
- Mark M Root
- Matt Vick
- Meghan Lamm
- Mengjia Tang
- Michael Kirka
- Natasha Ghezawi
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Priyanshi Agrawal
- Ryan Dehoff
- Shajjad Chowdhury
- Stephen M Killough
- Tim Graening Seibert
- Tolga Aytug
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhenglai Shen
- Zhili Feng

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.