Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Diana E Hun
- Tomonori Saito
- Som Shrestha
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Philip Boudreaux
- Beth L Armstrong
- Bryan Maldonado Puente
- Lawrence {Larry} M Anovitz
- Nolan Hayes
- Robert Sacci
- Zoriana Demchuk
- Ethan Self
- Jaswinder Sharma
- Mahabir Bhandari
- Sergiy Kalnaus
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Venugopal K Varma
- Achutha Tamraparni
- Adam Aaron
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andre O Desjarlais
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Catalin Gainaru
- Chanho Kim
- Charles D Ottinger
- Felipe Polo Garzon
- Georgios Polyzos
- Gina Accawi
- Gurneesh Jatana
- Ilias Belharouak
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Karen Cortes Guzman
- Khryslyn G Araño
- Kuma Sumathipala
- Logan Kearney
- Mark M Root
- Matthew S Chambers
- Mengjia Tang
- Michael Toomey
- Nancy Dudney
- Natasha Ghezawi
- Nihal Kanbargi
- Peng Yang
- Peter Wang
- Sai Krishna Reddy Adapa
- Stephen M Killough
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Xiang Lyu
- Yifang Liu
- Zhenglai Shen

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.
Next generation batteries for electric vehicles (EVs) and other manufacturing needs require solid-state batteries made with high-performance solid electrolytes. These thin films are critical components but are difficult to manufacture to meet performance standards.

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Current battery materials such as silicon suffer from poor ion and electron transport due to non-optimal wiring. This invention facilitates particle interconnectedness to facilitate ion motion and electron transport overcoming poor assembly.

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.