Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Diana E Hun
- Tomonori Saito
- Som Shrestha
- Gabriel Veith
- Philip Boudreaux
- Beth L Armstrong
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Robert Sacci
- Zoriana Demchuk
- Bryan Maldonado Puente
- Ethan Self
- Jaswinder Sharma
- Mahabir Bhandari
- Mingyan Li
- Nolan Hayes
- Sam Hollifield
- Sergiy Kalnaus
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Venugopal K Varma
- Achutha Tamraparni
- Adam Aaron
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andre O Desjarlais
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Weber
- Catalin Gainaru
- Chanho Kim
- Charles D Ottinger
- Felipe Polo Garzon
- Georgios Polyzos
- Gina Accawi
- Gurneesh Jatana
- Ilias Belharouak
- Isaac Sikkema
- Joseph Olatt
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Karen Cortes Guzman
- Kevin Spakes
- Khryslyn G Araño
- Kuma Sumathipala
- Kunal Mondal
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mary A Adkisson
- Matthew S Chambers
- Mengjia Tang
- Michael Toomey
- Nancy Dudney
- Natasha Ghezawi
- Nihal Kanbargi
- Oscar Martinez
- Peng Yang
- Peter Wang
- Sai Krishna Reddy Adapa
- Stephen M Killough
- T Oesch
- Venkatakrishnan Singanallur Vaidyanathan
- Vera Bocharova
- Xiang Lyu
- Zhenglai Shen

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.