Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Yong Chae Lim
- Zoriana Demchuk
- Blane Fillingim
- Bryan Maldonado Puente
- Lauren Heinrich
- Mahabir Bhandari
- Nolan Hayes
- Rangasayee Kannan
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Thomas Feldhausen
- Venugopal K Varma
- Yousub Lee
- Zhili Feng
- Achutha Tamraparni
- Adam Aaron
- Adam Stevens
- Alexander I Wiechert
- Andre O Desjarlais
- Bryan Lim
- Catalin Gainaru
- Charles D Ottinger
- Costas Tsouris
- Debangshu Mukherjee
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Jian Chen
- Jiheon Jun
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Md Inzamam Ul Haque
- Mengjia Tang
- Natasha Ghezawi
- Olga S Ovchinnikova
- Peter Wang
- Priyanshi Agrawal
- Radu Custelcean
- Ramanan Sankaran
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Stephen M Killough
- Tomas Grejtak
- Venkatakrishnan Singanallur Vaidyanathan
- Vimal Ramanuj
- Wei Zhang
- Wenjun Ge
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhenglai Shen

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.