Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Diana E Hun
- Som Shrestha
- Philip Boudreaux
- Tomonori Saito
- Zoriana Demchuk
- Blane Fillingim
- Brian Post
- Bryan Maldonado Puente
- Daniel Jacobson
- Lauren Heinrich
- Mahabir Bhandari
- Nolan Hayes
- Peeyush Nandwana
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Sudarsanam Babu
- Thomas Feldhausen
- Venugopal K Varma
- Yousub Lee
- Achutha Tamraparni
- Adam Aaron
- Alexander I Wiechert
- Andre O Desjarlais
- Catalin Gainaru
- Charles D Ottinger
- Costas Tsouris
- Debangshu Mukherjee
- Gina Accawi
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Md Inzamam Ul Haque
- Mengjia Tang
- Natasha Ghezawi
- Olga S Ovchinnikova
- Peter Wang
- Radu Custelcean
- Ramanan Sankaran
- Stephen M Killough
- Venkatakrishnan Singanallur Vaidyanathan
- Vimal Ramanuj
- Wenjun Ge
- Zhenglai Shen

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.