Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate
(138)
- User Facilities (28)
- (-) Neutron Sciences Directorate (11)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Amit K Naskar
- Brian Post
- Dan Coughlin
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Andrzej Nycz
- Brittany Rodriguez
- Chris Masuo
- Jaswinder Sharma
- Jim Tobin
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Adam Stevens
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Arit Das
- Bekki Mills
- Benjamin L Doughty
- Bruce Hannan
- Christopher Bowland
- Craig Blue
- Dave Willis
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Georges Chahine
- Halil Tekinalp
- Holly Humphrey
- Jeremy Malmstead
- John Lindahl
- John Wenzel
- Josh Crabtree
- Joshua Vaughan
- Julian Charron
- Katie Copenhaver
- Keju An
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Merlin Theodore
- Oluwafemi Oyedeji
- Peter Wang
- Polad Shikhaliev
- Robert E Norris Jr
- Ryan Ogle
- Sana Elyas
- Santanu Roy
- Shannon M Mahurin
- Sudarsanam Babu
- Sumit Gupta
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Thomas Feldhausen
- Tomonori Saito
- Uvinduni Premadasa
- Vasilis Tzoganis
- Vasiliy Morozov
- Vera Bocharova
- Victor Fanelli
- Vladislav N Sedov
- Xianhui Zhao
- Yacouba Diawara
- Yun Liu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.