Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steven Guzorek
- Chris Masuo
- Vipin Kumar
- Brian Post
- David Nuttall
- Peter Wang
- Alex Walters
- Dan Coughlin
- Edgar Lara-Curzio
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Brian Gibson
- Brittany Rodriguez
- Eric Wolfe
- Jim Tobin
- Joshua Vaughan
- Luke Meyer
- Pum Kim
- Segun Isaac Talabi
- Steven J Zinkle
- Subhabrata Saha
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Yanli Wang
- Ying Yang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Akash Jag Prasad
- Alex Roschli
- Amit Shyam
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Calen Kimmell
- Charles Hawkins
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Craig Blue
- Erin Webb
- Evin Carter
- Frederic Vautard
- Georges Chahine
- Gordon Robertson
- Halil Tekinalp
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marie Romedenne
- Merlin Theodore
- Nidia Gallego
- Oluwafemi Oyedeji
- Riley Wallace
- Rishi Pillai
- Ritin Mathews
- Ryan Ogle
- Sana Elyas
- Sudarsanam Babu
- Thomas Feldhausen
- Tim Graening Seibert
- Vincent Paquit
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Xiaohan Yang

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.