Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Alex Plotkowski
- Amit Shyam
- Brian Post
- David Nuttall
- Edgar Lara-Curzio
- Soydan Ozcan
- Ying Yang
- Dan Coughlin
- Eric Wolfe
- James A Haynes
- Jim Tobin
- Pum Kim
- Segun Isaac Talabi
- Steven J Zinkle
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Adam Willoughby
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brittany Rodriguez
- Bruce A Pint
- Charles Hawkins
- Craig Blue
- Erin Webb
- Evin Carter
- Frederic Vautard
- Georges Chahine
- Gerry Knapp
- Halil Tekinalp
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marie Romedenne
- Merlin Theodore
- Nadim Hmeidat
- Nicholas Richter
- Nidia Gallego
- Oluwafemi Oyedeji
- Peeyush Nandwana
- Rishi Pillai
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Sunyong Kwon
- Thomas Feldhausen
- Tim Graening Seibert
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.