Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Ilias Belharouak
- Steven Guzorek
- Rafal Wojda
- Vipin Kumar
- David Nuttall
- Isabelle Snyder
- Alexey Serov
- Ali Riza Ekti
- Brian Post
- Dan Coughlin
- Nadim Hmeidat
- Prasad Kandula
- Soydan Ozcan
- Steve Bullock
- Subho Mukherjee
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Xiang Lyu
- Aaron Wilson
- Adam Siekmann
- Ali Abouimrane
- Amir K Ziabari
- Brittany Rodriguez
- Diana E Hun
- Eddie Lopez Honorato
- Elizabeth Piersall
- Emilio Piesciorovsky
- Jaswinder Sharma
- Jim Tobin
- Marm Dixit
- Mostak Mohammad
- Nils Stenvig
- Omer Onar
- Ozgur Alaca
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Raymond Borges Hink
- Ruhul Amin
- Ryan Dehoff
- Ryan Heldt
- Segun Isaac Talabi
- Stephen M Killough
- Subhabrata Saha
- Suman Debnath
- Tyler Gerczak
- Uday Vaidya
- Umesh N MARATHE
- Vandana Rallabandi
- Vincent Paquit
- Vivek Sujan
- Yaosuo Xue
- Aaron Werth
- Adam Stevens
- Alex Plotkowski
- Alex Roschli
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Bryan Maldonado Puente
- Burak Ozpineci
- Christopher Fancher
- Christopher Hobbs
- Corey Cooke
- Craig Blue
- David L Wood III
- Emrullah Aydin
- Erin Webb
- Ethan Self
- Eve Tsybina
- Evin Carter
- Fei Wang
- Gabriel Veith
- Gary Hahn
- Georges Chahine
- Georgios Polyzos
- Gina Accawi
- Guang Yang
- Gurneesh Jatana
- Halil Tekinalp
- Holly Humphrey
- Hongbin Sun
- Isaac Sikkema
- James Szybist
- Jeremy Malmstead
- Jin Dong
- John Holliman II
- John Lindahl
- Jonathan Willocks
- Joseph Olatt
- Josh Crabtree
- Julian Charron
- Junbin Choi
- Katie Copenhaver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kunal Mondal
- Logan Kearney
- Lu Yu
- Mahim Mathur
- Marcio Magri Kimpara
- Mark M Root
- Matt Kurley III
- Meghan Lamm
- Merlin Theodore
- Michael Kirka
- Michael Toomey
- Michelle Lehmann
- Mingyan Li
- Nance Ericson
- Nihal Kanbargi
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Oscar Martinez
- Paul Groth
- Peter L Fuhr
- Peter Wang
- Phani Ratna Vanamali Marthi
- Pradeep Ramuhalli
- Praveen Kumar
- Ritu Sahore
- Rodney D Hunt
- Ryan Kerekes
- Ryan Ogle
- Sally Ghanem
- Sam Hollifield
- Sana Elyas
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Sudarsanam Babu
- Sunil Subedi
- Thomas Feldhausen
- Todd Toops
- Viswadeep Lebakula
- Xianhui Zhao
- Yaocai Bai
- Yarom Polsky
- Yonghao Gui
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.