Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Amit K Naskar
- Bo Shen
- Brian Post
- David Nuttall
- Praveen Cheekatamarla
- Soydan Ozcan
- Vishaldeep Sharma
- Dan Coughlin
- James Manley
- Jaswinder Sharma
- Jim Tobin
- Kyle Gluesenkamp
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Arit Das
- Benjamin L Doughty
- Brittany Rodriguez
- Christopher Bowland
- Craig Blue
- Easwaran Krishnan
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Georges Chahine
- Halil Tekinalp
- Holly Humphrey
- Hongbin Sun
- Jamieson Brechtl
- Jeremy Malmstead
- Joe Rendall
- John Lindahl
- Josh Crabtree
- Julian Charron
- Kashif Nawaz
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Melanie Moses-DeBusk Debusk
- Merlin Theodore
- Muneeshwaran Murugan
- Nadim Hmeidat
- Oluwafemi Oyedeji
- Robert E Norris Jr
- Ryan Ogle
- Sana Elyas
- Santanu Roy
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Gupta
- Thomas Feldhausen
- Uvinduni Premadasa
- Vera Bocharova
- Xianhui Zhao
- Yifeng Hu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.