Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Ilias Belharouak
- Steven Guzorek
- Amit Shyam
- Brian Post
- Vipin Kumar
- Alex Plotkowski
- David Nuttall
- Soydan Ozcan
- Adam Stevens
- Ali Abouimrane
- Dan Coughlin
- James A Haynes
- Jim Tobin
- Pum Kim
- Ruhul Amin
- Ryan Dehoff
- Segun Isaac Talabi
- Sudarsanam Babu
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Brittany Rodriguez
- Christopher Fancher
- Craig Blue
- David L Wood III
- Dean T Pierce
- Erin Webb
- Evin Carter
- Georges Chahine
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Halil Tekinalp
- Hongbin Sun
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Junbin Choi
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Lu Yu
- Marm Dixit
- Merlin Theodore
- Nadim Hmeidat
- Nicholas Richter
- Oluwafemi Oyedeji
- Peeyush Nandwana
- Peter Wang
- Pradeep Ramuhalli
- Rangasayee Kannan
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Steve Bullock
- Subhabrata Saha
- Sunyong Kwon
- Thomas Feldhausen
- William Peter
- Xianhui Zhao
- Yaocai Bai
- Ying Yang
- Yukinori Yamamoto
- Zhijia Du

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.