Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Ali Passian
- Vipin Kumar
- Amit K Naskar
- Brian Post
- David Nuttall
- Soydan Ozcan
- Dan Coughlin
- Jaswinder Sharma
- Jim Tobin
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Arit Das
- Benjamin L Doughty
- Brittany Rodriguez
- Christopher Bowland
- Claire Marvinney
- Craig Blue
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Georges Chahine
- Halil Tekinalp
- Harper Jordan
- Holly Humphrey
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Merlin Theodore
- Nadim Hmeidat
- Nance Ericson
- Oluwafemi Oyedeji
- Robert E Norris Jr
- Ryan Ogle
- Sana Elyas
- Santanu Roy
- Srikanth Yoginath
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Gupta
- Thomas Feldhausen
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Xianhui Zhao

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.