Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steven Guzorek
- Brian Post
- Beth L Armstrong
- Chris Masuo
- Ryan Dehoff
- Steve Bullock
- Vincent Paquit
- Vipin Kumar
- David Nuttall
- Michael Kirka
- Peter Wang
- Rangasayee Kannan
- Adam Stevens
- Alex Walters
- Amit Shyam
- Dan Coughlin
- Jun Qu
- Nadim Hmeidat
- Peeyush Nandwana
- Soydan Ozcan
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Brian Gibson
- Brittany Rodriguez
- Christopher Ledford
- Clay Leach
- Corson Cramer
- James A Haynes
- Jim Tobin
- Joshua Vaughan
- Luke Meyer
- Meghan Lamm
- Philip Bingham
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Sumit Bahl
- Tomas Grejtak
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Ying Yang
- Akash Jag Prasad
- Ben Lamm
- Bryan Lim
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Costas Tsouris
- Craig Blue
- David J Mitchell
- Diana E Hun
- Erin Webb
- Ethan Self
- Evin Carter
- Gabriel Veith
- Georges Chahine
- Gerry Knapp
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Halil Tekinalp
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Jordan Wright
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Mark M Root
- Marm Dixit
- Matthew S Chambers
- Merlin Theodore
- Michael Borish
- Nancy Dudney
- Nicholas Richter
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thomas Feldhausen
- Tolga Aytug
- Trevor Aguirre
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.