Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Alex Plotkowski
- Amit Shyam
- Brian Post
- David Nuttall
- Ryan Dehoff
- Soydan Ozcan
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Dan Coughlin
- Diana E Hun
- James A Haynes
- Jim Tobin
- Philip Bingham
- Philip Boudreaux
- Pum Kim
- Segun Isaac Talabi
- Stephen M Killough
- Sumit Bahl
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Vincent Paquit
- Adam Stevens
- Alex Roschli
- Alice Perrin
- Andres Marquez Rossy
- Brittany Rodriguez
- Bryan Maldonado Puente
- Corey Cooke
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerry Knapp
- Gina Accawi
- Gurneesh Jatana
- Halil Tekinalp
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Jovid Rakhmonov
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mark M Root
- Merlin Theodore
- Michael Kirka
- Nadim Hmeidat
- Nicholas Richter
- Nolan Hayes
- Obaid Rahman
- Oluwafemi Oyedeji
- Peeyush Nandwana
- Peter Wang
- Ryan Kerekes
- Ryan Ogle
- Sally Ghanem
- Sana Elyas
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Sunyong Kwon
- Thomas Feldhausen
- Xianhui Zhao
- Ying Yang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.