Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Omer Onar
- Subho Mukherjee
- Ahmed Hassen
- Vivek Sujan
- Mostak Mohammad
- Vlastimil Kunc
- Vandana Rallabandi
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Erdem Asa
- Shajjad Chowdhury
- Adam Siekmann
- Brian Post
- Burak Ozpineci
- Dan Coughlin
- Emrullah Aydin
- Jon Wilkins
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Brittany Rodriguez
- Gui-Jia Su
- Isabelle Snyder
- Jim Tobin
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Uday Vaidya
- Umesh N MARATHE
- Veda Prakash Galigekere
- Adam Stevens
- Alex Roschli
- Ali Riza Ekti
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Halil Tekinalp
- Hong Wang
- Hyeonsup Lim
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Lingxiao Xue
- Merlin Theodore
- Nishanth Gadiyar
- Oluwafemi Oyedeji
- Rafal Wojda
- Ryan Ogle
- Sana Elyas
- Sudarsanam Babu
- Thomas Feldhausen
- Xianhui Zhao

Output Current Estimation and Control in Primary Side LCC Secondary Side Series Compensated Wireless
Wireless charging of electric vehicles require the ability to control the output current in the power transfer system, but that is often not possible as the availability of signals from the secondary side to the primary side is difficult and not always feasible.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

This invention introduces a continuous composite forming process that produces large parts with variable cross-sections and shapes, exceeding the size of the forming machine itself.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.

This invention presents an integrated strategy to reduce end-user electricity costs and grid carbon emissions by efficiently utilizing Distributed Energy Resources (DER) and grid-scale electrical energy storage systems, such as batteries.

A Family of Integrated On-board Charger for Single and Dual Motor based Electric Vehicle Power Train
The invention aims to reduce the cost, weight and volume of existing on-board electric vehicle chargers by integrating power electronic converters of the chargers with the traction inverter.

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Wire arc additive manufacturing has limited productivity and casting processes require complex molds that are expensive and time-consuming to produce.

No readily available public data exists for vehicle class and weight information that covers the entire U.S. highway network. The Travel Monitoring Analysis System, managed by the Federal Highway Administration covers only less than 1% of the US highway network.