Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Brian Post
- Dan Coughlin
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Brittany Rodriguez
- Craig Blue
- Jim Tobin
- John Lindahl
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Daniel Rasmussen
- Debraj De
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Georges Chahine
- Halil Tekinalp
- Hsin Wang
- James Gaboardi
- James Klett
- Jeremy Malmstead
- Jesse McGaha
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kevin Sparks
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liz McBride
- Merlin Theodore
- Mike Zach
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Ryan Ogle
- Sana Elyas
- Sudarsanam Babu
- Thomas Feldhausen
- Todd Thomas
- Tony Beard
- Xianhui Zhao
- Xiuling Nie

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Wire arc additive manufacturing has limited productivity and casting processes require complex molds that are expensive and time-consuming to produce.

ORNL has developed a new hybrid additive manufacturing technique to create complex three-dimensional shapes like air foils and wind generator blades much more quickly.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Important of the application is enabling a cost-effective precision manufacturing method Current technology is limited to injection molded individual pi-joints limiting control of pi-joint direction, this creates hurdle in introducing high volume production to the composite in

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

An innovative rapid manufacturing method for tailored fiber preforms with controlled fiber alignment for enhanced mechanical properties.