Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- Brian Post
- David Nuttall
- Joseph Chapman
- Nicholas Peters
- Soydan Ozcan
- Craig Blue
- Dan Coughlin
- Hsuan-Hao Lu
- Jim Tobin
- John Lindahl
- Joseph Lukens
- Mike Zach
- Muneer Alshowkan
- Pum Kim
- Segun Isaac Talabi
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Andrew F May
- Anees Alnajjar
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Brian Williams
- Brittany Rodriguez
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Georges Chahine
- Halil Tekinalp
- Hsin Wang
- James Gaboardi
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse McGaha
- Josh Crabtree
- Julian Charron
- Justin Griswold
- Katie Copenhaver
- Kevin Sparks
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Mariam Kiran
- Merlin Theodore
- Nadim Hmeidat
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Ryan Ogle
- Sana Elyas
- Sandra Davern
- Steve Bullock
- Subhabrata Saha
- Sudarsanam Babu
- Thomas Feldhausen
- Todd Thomas
- Tony Beard
- Xianhui Zhao
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.