Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steven Guzorek
- Brian Post
- Chris Masuo
- Ryan Dehoff
- Vincent Paquit
- Vipin Kumar
- David Nuttall
- Peter Wang
- Adam Stevens
- Alex Walters
- Dan Coughlin
- Michael Kirka
- Nadim Hmeidat
- Rangasayee Kannan
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Brittany Rodriguez
- Clay Leach
- Craig Blue
- Jim Tobin
- John Lindahl
- Joshua Vaughan
- Luke Meyer
- Mike Zach
- Peeyush Nandwana
- Philip Bingham
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Diana E Hun
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Georges Chahine
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Halil Tekinalp
- Hsin Wang
- Isha Bhandari
- J.R. R Matheson
- James Gaboardi
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- Jesse McGaha
- John Potter
- Josh Crabtree
- Julian Charron
- Justin Griswold
- Katie Copenhaver
- Kevin Sparks
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kuntal De
- Laetitia H Delmau
- Liam White
- Liz McBride
- Luke Sadergaski
- Mark M Root
- Merlin Theodore
- Michael Borish
- Nedim Cinbiz
- Obaid Rahman
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sandra Davern
- Sarah Graham
- Thomas Feldhausen
- Todd Thomas
- Tony Beard
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Xiuling Nie
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.