Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steven Guzorek
- Chris Masuo
- Rama K Vasudevan
- Vipin Kumar
- Brian Post
- David Nuttall
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Dan Coughlin
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Brian Gibson
- Brittany Rodriguez
- Jim Tobin
- Joshua Vaughan
- Kyle Kelley
- Luke Meyer
- Pum Kim
- Segun Isaac Talabi
- Subhabrata Saha
- Udaya C Kalluri
- Uday Vaidya
- Umesh N MARATHE
- William Carter
- Adam Stevens
- Akash Jag Prasad
- Alex Roschli
- Amit Shyam
- Anton Ievlev
- Arpan Biswas
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Craig Blue
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerd Duscher
- Gordon Robertson
- Halil Tekinalp
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Merlin Theodore
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Riley Wallace
- Ritin Mathews
- Ryan Ogle
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Stephen Jesse
- Sudarsanam Babu
- Sumner Harris
- Thomas Feldhausen
- Utkarsh Pratiush
- Vincent Paquit
- Vladimir Orlyanchik
- Xianhui Zhao
- Xiaohan Yang

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.