Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Amit K Naskar
- Sam Hollifield
- Chad Steed
- Jaswinder Sharma
- Junghoon Chae
- Logan Kearney
- Michael Toomey
- Mingyan Li
- Nihal Kanbargi
- Soydan Ozcan
- Travis Humble
- Xianhui Zhao
- Aaron Werth
- Alex Roschli
- Ali Passian
- Arit Das
- Benjamin L Doughty
- Brian Weber
- Christopher Bowland
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Halil Tekinalp
- Harper Jordan
- Holly Humphrey
- Isaac Sikkema
- Jason Jarnagin
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kitty K Mccracken
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Oluwafemi Oyedeji
- Oscar Martinez
- Raymond Borges Hink
- Robert E Norris Jr
- Rob Root
- Samudra Dasgupta
- Sanjita Wasti
- Santanu Roy
- Srikanth Yoginath
- Sumit Gupta
- T Oesch
- Tyler Smith
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.