Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Sam Hollifield
- Travis Humble
- Alexandre Sorokine
- Brian Weber
- Clinton Stipek
- Daniel Adams
- Isaac Sikkema
- Jessica Moehl
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Mengdawn Cheng
- Oscar Martinez
- Paula Cable-Dunlap
- Philipe Ambrozio Dias
- Samudra Dasgupta
- Taylor Hauser
- T Oesch
- Viswadeep Lebakula

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.