Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Isabelle Snyder
- Adam Siekmann
- Andrzej Nycz
- Chris Masuo
- Emilio Piesciorovsky
- Luke Meyer
- Subho Mukherjee
- Vivek Sujan
- William Carter
- Aaron Werth
- Aaron Wilson
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Ali Riza Ekti
- Bekki Mills
- Bruce Hannan
- Dave Willis
- Elizabeth Piersall
- Erin Webb
- Eve Tsybina
- Evin Carter
- Gary Hahn
- Jeremy Malmstead
- John Wenzel
- Joshua Vaughan
- Keju An
- Kitty K Mccracken
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Nils Stenvig
- Oluwafemi Oyedeji
- Ozgur Alaca
- Peter Wang
- Polad Shikhaliev
- Raymond Borges Hink
- Shannon M Mahurin
- Soydan Ozcan
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Tyler Smith
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Viswadeep Lebakula
- Vladislav N Sedov
- Xianhui Zhao
- Yacouba Diawara
- Yarom Polsky
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Neutron beams are used around the world to study materials for various purposes.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.