Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Costas Tsouris
- Kashif Nawaz
- Soydan Ozcan
- Stephen Jesse
- Vincent Paquit
- Xianhui Zhao
- Akash Jag Prasad
- Alex Roschli
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Bogdan Dryzhakov
- Brian Fricke
- Calen Kimmell
- Canhai Lai
- Chengyun Hua
- Christopher Rouleau
- Chris Tyler
- Clay Leach
- Dali Wang
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gabor Halasz
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- James Parks II
- Jamieson Brechtl
- Jaydeep Karandikar
- Jeremy Malmstead
- Jewook Park
- Jian Chen
- Jiaqiang Yan
- Jong K Keum
- Kai Li
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paula Cable-Dunlap
- Petro Maksymovych
- Radu Custelcean
- Ryan Dehoff
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sanjita Wasti
- Steven Randolph
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- Vladimir Orlyanchik
- Wei Zhang
- Zackary Snow
- Zhili Feng
- Zhiming Gao

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.