Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Adam Siekmann
- Alex Roschli
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Erin Webb
- Evin Carter
- Hong Wang
- Hyeonsup Lim
- Jeremy Malmstead
- Kitty K Mccracken
- Meghan Lamm
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Shajjad Chowdhury
- Soydan Ozcan
- Steven J Zinkle
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xianhui Zhao
- Yanli Wang
- Ying Yang
- Yutai Kato

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

No readily available public data exists for vehicle class and weight information that covers the entire U.S. highway network. The Travel Monitoring Analysis System, managed by the Federal Highway Administration covers only less than 1% of the US highway network.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Pairing hybrid neural network modeling techniques with artificial intelligence, or AI, controls has resulted in a unique hybrid system that creates a smart solution for traffic-signal timing.