Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ilias Belharouak
- Yong Chae Lim
- Zhili Feng
- Ali Abouimrane
- Jian Chen
- Rangasayee Kannan
- Ruhul Amin
- Soydan Ozcan
- Wei Zhang
- Xianhui Zhao
- Adam Stevens
- Alex Roschli
- Brian Post
- Bryan Lim
- Dali Wang
- David L Wood III
- Erin Webb
- Evin Carter
- Georgios Polyzos
- Halil Tekinalp
- Hongbin Sun
- Jaswinder Sharma
- Jeremy Malmstead
- Jiheon Jun
- Junbin Choi
- Kitty K Mccracken
- Lu Yu
- Marm Dixit
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peeyush Nandwana
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sanjita Wasti
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Tyler Smith
- William Peter
- Yaocai Bai
- Yiyu Wang
- Yukinori Yamamoto
- Zhijia Du

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.