Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Steve Bullock
- Corson Cramer
- Radu Custelcean
- Costas Tsouris
- Ahmed Hassen
- Bruce Moyer
- Greg Larsen
- Gyoung Gug Jang
- James Klett
- Jeffrey Einkauf
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Benjamin L Doughty
- Gs Jung
- Nikki Thiele
- Santa Jansone-Popova
- Soydan Ozcan
- Steven Guzorek
- Tyler Smith
- Xianhui Zhao
- Alexander I Wiechert
- Alex Roschli
- Beth L Armstrong
- Brittany Rodriguez
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dali Wang
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Halil Tekinalp
- Ilja Popovs
- Jayanthi Kumar
- Jennifer M Pyles
- Jeremy Malmstead
- Jian Chen
- John Lindahl
- Jong K Keum
- Jordan Wright
- Kitty K Mccracken
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Mengdawn Cheng
- Michael Kirka
- Mina Yoon
- Oluwafemi Oyedeji
- Parans Paranthaman
- Paula Cable-Dunlap
- Sana Elyas
- Sanjita Wasti
- Santanu Roy
- Saurabh Prakash Pethe
- Subhabrata Saha
- Subhamay Pramanik
- Tomonori Saito
- Tony Beard
- Uvinduni Premadasa
- Vera Bocharova
- Vipin Kumar
- Wei Zhang
- Yingzhong Ma
- Zhili Feng

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The invention teaches a method for separating uranium and the transuranic actinides neptunium, plutonium, and americium from nitric acid solutions by co-crystallization upon lowering the temperature from 60 C to 20 C or lower.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi