Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ying Yang
- Amit K Naskar
- Alice Perrin
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Soydan Ozcan
- Steven J Zinkle
- Xianhui Zhao
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Alex Roschli
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Bruce A Pint
- Christopher Bowland
- Christopher Ledford
- Costas Tsouris
- Dali Wang
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Holly Humphrey
- James A Haynes
- Jeremy Malmstead
- Jian Chen
- Jong K Keum
- Kitty K Mccracken
- Mengdawn Cheng
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Paula Cable-Dunlap
- Radu Custelcean
- Robert E Norris Jr
- Ryan Dehoff
- Sanjita Wasti
- Santanu Roy
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Tim Graening Seibert
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Wei Zhang
- Xiang Chen
- Yan-Ru Lin
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.