Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Xianhui Zhao
- Alex Roschli
- Dali Wang
- Diana E Hun
- Easwaran Krishnan
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Halil Tekinalp
- Ilenne Del Valle Kessra
- James Manley
- Jamieson Brechtl
- Jeremy Malmstead
- Jian Chen
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kitty K Mccracken
- Kuma Sumathipala
- Mengdawn Cheng
- Mengjia Tang
- Muneeshwaran Murugan
- Oluwafemi Oyedeji
- Paul Abraham
- Paula Cable-Dunlap
- Sanjita Wasti
- Tomonori Saito
- Tyler Smith
- Wei Zhang
- Xiaohan Yang
- Yang Liu
- Zhili Feng
- Zoriana Demchuk

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.