Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Andrzej Nycz
- Chris Masuo
- Alex Walters
- Kuntal De
- Luke Meyer
- Udaya C Kalluri
- Vlastimil Kunc
- William Carter
- Ahmed Hassen
- Alexander I Kolesnikov
- Alexei P Sokolov
- Bekki Mills
- Biruk A Feyissa
- Bruce Hannan
- Clay Leach
- Dan Coughlin
- Dave Willis
- Debjani Pal
- Jim Tobin
- John Wenzel
- Josh Crabtree
- Joshua Vaughan
- Keju An
- Kim Sitzlar
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Merlin Theodore
- Peter Wang
- Polad Shikhaliev
- Shannon M Mahurin
- Steven Guzorek
- Subhabrata Saha
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vincent Paquit
- Vipin Kumar
- Vladislav N Sedov
- Xiaohan Yang
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Neutron beams are used around the world to study materials for various purposes.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.