Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Andrzej Nycz
- Justin West
- Peter Wang
- Chris Masuo
- Ritin Mathews
- Blane Fillingim
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Kuntal De
- Lauren Heinrich
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- Udaya C Kalluri
- Vincent Paquit
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Alex Walters
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Beth L Armstrong
- Biruk A Feyissa
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- Corson Cramer
- Craig Blue
- Debjani Pal
- Emma Betters
- Fred List III
- Gordon Robertson
- Greg Corson
- Isha Bhandari
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Michael Borish
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiaohan Yang
- Yukinori Yamamoto

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.