Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Diana E Hun
- Kashif Nawaz
- Kyle Gluesenkamp
- Som Shrestha
- Joe Rendall
- Philip Boudreaux
- Tomonori Saito
- Zhiming Gao
- Bo Shen
- Bryan Maldonado Puente
- Kai Li
- Nolan Hayes
- Praveen Cheekatamarla
- Vishaldeep Sharma
- Zoriana Demchuk
- Andrzej Nycz
- James Manley
- Jamieson Brechtl
- Kuntal De
- Mahabir Bhandari
- Melanie Moses-DeBusk Debusk
- Mingkan Zhang
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Udaya C Kalluri
- Venugopal K Varma
- Achutha Tamraparni
- Adam Aaron
- Alex Walters
- Andre O Desjarlais
- Biruk A Feyissa
- Brian Fricke
- Catalin Gainaru
- Charles D Ottinger
- Cheng-Min Yang
- Chris Masuo
- Clay Leach
- Debjani Pal
- Dhruba Deka
- Easwaran Krishnan
- Gina Accawi
- Gurneesh Jatana
- Hongbin Sun
- Huixin (anna) Jiang
- Karen Cortes Guzman
- Kuma Sumathipala
- Mark M Root
- Mengjia Tang
- Muneeshwaran Murugan
- Natasha Ghezawi
- Navin Kumar
- Nickolay Lavrik
- Pengtao Wang
- Peter Wang
- Sreshtha Sinha Majumdar
- Stephen M Killough
- Troy Seay
- Tugba Turnaoglu
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Xiaobing Liu
- Xiaohan Yang
- Yeonshil Park
- Yifang Liu
- Yifeng Hu
- Zhenglai Shen

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Lean-burn natural gas (NG) engines are a preferred choice for the hard-to-electrify sectors for higher efficiency and lower NOx emissions, but methane slip can be a challenge.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

The use of class A3 and A2L refrigerants to replace conventional hydrofluorocarbons for their low global warming potential (GWP) presents risks due to leaks of flammable mixtures that could result in fire or explosion.

The quality and quantity of refrigerant charge in any vapor compression-based heating and cooling system is vital to its energy efficiency, thermal capacity, and reliability.

Performance of heat exchangers greatly suffers due to maldistribution of fluid, which also impacts the performance of the entire HVAC system. One method to reduce fluid maldistribution is to improve the design of the manifold to make the flow evenly distributed.

Commercial closed-cell insulation foam boards reduce their thermal resistivity by up to 30% due to gas diffusion in and out of foam cells.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.