Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Andrzej Nycz
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Kuntal De
- Scott Smith
- Udaya C Kalluri
- Viswadeep Lebakula
- Akash Jag Prasad
- Alexandre Sorokine
- Alex Walters
- Annetta Burger
- Biruk A Feyissa
- Brian Gibson
- Brian Post
- Calen Kimmell
- Carter Christopher
- Chance C Brown
- Chris Masuo
- Clay Leach
- Clinton Stipek
- Daniel Adams
- Debjani Pal
- Debraj De
- Emma Betters
- Eve Tsybina
- Gautam Malviya Thakur
- Greg Corson
- James Gaboardi
- Jesse Heineman
- Jesse McGaha
- Jessica Moehl
- John Potter
- Josh B Harbin
- Kevin Sparks
- Liz McBride
- Philipe Ambrozio Dias
- Taylor Hauser
- Todd Thomas
- Tony L Schmitz
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Xiuling Nie

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.