Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Amit K Naskar
- Andrzej Nycz
- Jaswinder Sharma
- Kuntal De
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Udaya C Kalluri
- Alexander Enders
- Alexander I Wiechert
- Alex Walters
- Arit Das
- Benjamin L Doughty
- Benjamin Manard
- Biruk A Feyissa
- Charles F Weber
- Chris Masuo
- Christopher Bowland
- Christopher S Blessinger
- Clay Leach
- Costas Tsouris
- Debjani Pal
- Derek Dwyer
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- Joanna Mcfarlane
- Jonathan Willocks
- Junghyun Bae
- Louise G Evans
- Matt Vick
- Mengdawn Cheng
- Paula Cable-Dunlap
- Richard L. Reed
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Uvinduni Premadasa
- Vandana Rallabandi
- Vera Bocharova
- Vincent Paquit
- Xiaohan Yang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.