Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Gabriel Veith
- Beth L Armstrong
- Guang Yang
- Hongbin Sun
- Michelle Lehmann
- Robert Sacci
- Tomonori Saito
- Daniel Jacobson
- Eddie Lopez Honorato
- Ethan Self
- Ilias Belharouak
- Jaswinder Sharma
- Prashant Jain
- Ryan Heldt
- Sergiy Kalnaus
- Tyler Gerczak
- Alexander Enders
- Alexander I Wiechert
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew F May
- Anisur Rahman
- Anna M Mills
- Ben Garrison
- Benjamin L Doughty
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Chanho Kim
- Charles F Weber
- Christopher Hobbs
- Christopher S Blessinger
- Costas Tsouris
- Fred List III
- Georgios Polyzos
- Govindarajan Muralidharan
- Hsin Wang
- Ian Greenquist
- Isaac Sikkema
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Jun Yang
- Keith Carver
- Khryslyn G Araño
- Kunal Mondal
- Logan Kearney
- Mahim Mathur
- Matthew S Chambers
- Matt Kurley III
- Matt Vick
- Michael Toomey
- Mike Zach
- Mingyan Li
- Nancy Dudney
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nihal Kanbargi
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Sam Hollifield
- Thien D. Nguyen
- Thomas Butcher
- Thomas R Muth
- Ugur Mertyurek
- Vandana Rallabandi
- Venugopal K Varma
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiang Lyu

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.