Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Ying Yang
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Jun Qu
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Yong Chae Lim
- Zhili Feng
- Adam Willoughby
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- Costas Tsouris
- Daniel Jacobson
- David S Parker
- Eric Wolfe
- James A Haynes
- Jian Chen
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Rishi Pillai
- Rob Moore II
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Alexander I Wiechert
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Bryan Lim
- Charles F Weber
- Charles Hawkins
- Christopher Fancher
- David J Mitchell
- Dean T Pierce
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Louise G Evans
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Matt Vick
- Mike Zach
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Priyanshi Agrawal
- Radu Custelcean
- Richard L. Reed
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Vandana Rallabandi
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- Wei Zhang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.