Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Philip Boudreaux
- Som Shrestha
- Joseph Chapman
- Nicholas Peters
- Srikanth Yoginath
- Tomonori Saito
- Bryan Maldonado Puente
- Chad Steed
- Hsuan-Hao Lu
- James J Nutaro
- Joseph Lukens
- Junghoon Chae
- Mahabir Bhandari
- Muneer Alshowkan
- Nolan Hayes
- Pratishtha Shukla
- Sudip Seal
- Travis Humble
- Venugopal K Varma
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Ali Passian
- Anees Alnajjar
- Brian Williams
- Bryan Lim
- Catalin Gainaru
- Charles D Ottinger
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Karen Cortes Guzman
- Kuma Sumathipala
- Mariam Kiran
- Mark M Root
- Mengjia Tang
- Nance Ericson
- Natasha Ghezawi
- Pablo Moriano Salazar
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Samudra Dasgupta
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Tomas Grejtak
- Varisara Tansakul
- Yiyu Wang
- Zhenglai Shen

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.