Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Josh Michener
- Liangyu Qian
- Srikanth Yoginath
- Andrzej Nycz
- Austin L Carroll
- Chad Steed
- Isaiah Dishner
- James J Nutaro
- Jeff Foster
- John F Cahill
- Junghoon Chae
- Kuntal De
- Pratishtha Shukla
- Serena Chen
- Sudip Seal
- Travis Humble
- Udaya C Kalluri
- Xiaohan Yang
- Alex Walters
- Ali Passian
- Annetta Burger
- Biruk A Feyissa
- Bryan Lim
- Carrie Eckert
- Carter Christopher
- Chance C Brown
- Chris Masuo
- Clay Leach
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- James Gaboardi
- Jay D Huenemann
- Jesse McGaha
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- Kevin Sparks
- Kyle Davis
- Liz McBride
- Nance Ericson
- Pablo Moriano Salazar
- Paul Abraham
- Peeyush Nandwana
- Rangasayee Kannan
- Samudra Dasgupta
- Todd Thomas
- Tomas Grejtak
- Varisara Tansakul
- Vilmos Kertesz
- Vincent Paquit
- William Alexander
- Xiuling Nie
- Yang Liu
- Yiyu Wang

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

ORNL has developed bacterial strains that can utilize a common plastic co-monomer as a feedstock. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

Due to a genes unique nucleotide sequences acquired through horizontal gene transfer, the gene has a transcriptional repressor activity and innate enzymatic role.

We have developed bacterial strains that can convert sustainable feedstocks and waste feedstocks into chemical precursors for next generation plastics.

ORNL has identified a panel of novel nylon hydrolases with varied substrate and product selectivity.