Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate
(39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Yong Chae Lim
- Zhili Feng
- Jian Chen
- Rangasayee Kannan
- Wei Zhang
- Adam Stevens
- Alexander Enders
- Brian Post
- Bryan Lim
- Christopher S Blessinger
- Costas Tsouris
- Dali Wang
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Jiheon Jun
- Jong K Keum
- Junghyun Bae
- Mina Yoon
- Peeyush Nandwana
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Ryan Dehoff
- Sarah Graham
- Sudarsanam Babu
- Thomas R Muth
- Tomas Grejtak
- Venugopal K Varma
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.