Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate
(39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Mike Zach
- Sergei V Kalinin
- Andrew F May
- Annetta Burger
- Anton Ievlev
- Ben Garrison
- Bogdan Dryzhakov
- Brad Johnson
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James Gaboardi
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- John Lindahl
- Jong K Keum
- Justin Griswold
- Kevin M Roccapriore
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Liz McBride
- Luke Sadergaski
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mina Yoon
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Radu Custelcean
- Sandra Davern
- Stephen Jesse
- Steven Randolph
- Todd Thomas
- Tony Beard
- Xiuling Nie
- Yongtao Liu

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.