Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Vipin Kumar
- David Nuttall
- Anees Alnajjar
- Brian Post
- Dan Coughlin
- Nadim Hmeidat
- Soydan Ozcan
- Steve Bullock
- Tyler Smith
- Brittany Rodriguez
- Eddie Lopez Honorato
- Jim Tobin
- Nageswara Rao
- Pum Kim
- Ryan Heldt
- Segun Isaac Talabi
- Subhabrata Saha
- Tyler Gerczak
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Callie Goetz
- Christopher Hobbs
- Craig A Bridges
- Craig Blue
- Erin Webb
- Evin Carter
- Fred List III
- Georges Chahine
- Halil Tekinalp
- Jeremy Malmstead
- John Lindahl
- Josh Crabtree
- Julian Charron
- Katie Copenhaver
- Keith Carver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Mariam Kiran
- Matt Kurley III
- Merlin Theodore
- Oluwafemi Oyedeji
- Richard Howard
- Rodney D Hunt
- Ryan Ogle
- Sana Elyas
- Sheng Dai
- Sudarsanam Babu
- Thomas Butcher
- Thomas Feldhausen
- Xianhui Zhao

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

The eDICEML digital twin is proposed which emulates networks and hosts of an instrument-computing ecosystem. It runs natively on an ecosystem’s host or as a portable virtual machine.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.