Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Chad Steed
- Junghoon Chae
- Lauren Heinrich
- Mingyan Li
- Peeyush Nandwana
- Sam Hollifield
- Sudarsanam Babu
- Thomas Feldhausen
- Travis Humble
- Yousub Lee
- Alexander I Wiechert
- Brian Weber
- Costas Tsouris
- Craig A Bridges
- Debangshu Mukherjee
- Gs Jung
- Gyoung Gug Jang
- Isaac Sikkema
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mariam Kiran
- Mary A Adkisson
- Md Inzamam Ul Haque
- Nageswara Rao
- Olga S Ovchinnikova
- Oscar Martinez
- Radu Custelcean
- Ramanan Sankaran
- Samudra Dasgupta
- Sheng Dai
- T Oesch
- Vimal Ramanuj
- Wenjun Ge

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.