Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- (-) User Facilities (27)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steven Guzorek
- Rama K Vasudevan
- Ryan Dehoff
- Brian Post
- Sergei V Kalinin
- Vipin Kumar
- Yongtao Liu
- David Nuttall
- Kashif Nawaz
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Soydan Ozcan
- Adam Stevens
- Dan Coughlin
- Jamieson Brechtl
- Jim Tobin
- Michael Kirka
- Pum Kim
- Segun Isaac Talabi
- Stephen Jesse
- Sudarsanam Babu
- Tyler Smith
- Uday Vaidya
- Umesh N MARATHE
- Vincent Paquit
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brittany Rodriguez
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Craig Blue
- Debangshu Mukherjee
- Diana E Hun
- Easwaran Krishnan
- Erin Webb
- Evin Carter
- Georges Chahine
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Halil Tekinalp
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- James Manley
- Jeremy Malmstead
- Jewook Park
- Joe Rendall
- John Lindahl
- Jong K Keum
- Josh Crabtree
- Julian Charron
- Kai Li
- Karen Cortes Guzman
- Katie Copenhaver
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kuma Sumathipala
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mengjia Tang
- Merlin Theodore
- Mina Yoon
- Muneeshwaran Murugan
- Nadim Hmeidat
- Neus Domingo Marimon
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Ryan Ogle
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Sarah Graham
- Steve Bullock
- Steven Randolph
- Subhabrata Saha
- Sumner Harris
- Thomas Feldhausen
- Tomonori Saito
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- William Peter
- Xianhui Zhao
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao
- Zoriana Demchuk

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.