Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- (-) Computing and Computational Sciences Directorate (39)
- (-) User Facilities (28)
Researcher
- Ali Passian
- Rama K Vasudevan
- Ryan Dehoff
- Hsuan-Hao Lu
- Joseph Lukens
- Nicholas Peters
- Peeyush Nandwana
- Sergei V Kalinin
- Yongtao Liu
- Alex Plotkowski
- Amit Shyam
- Anees Alnajjar
- Blane Fillingim
- Brian Post
- Joseph Chapman
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Muneer Alshowkan
- Olga S Ovchinnikova
- Srikanth Yoginath
- Sudarsanam Babu
- Alice Perrin
- Chad Steed
- Costas Tsouris
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- James J Nutaro
- Junghoon Chae
- Kashif Nawaz
- Lauren Heinrich
- Michael Kirka
- Nageswara Rao
- Pratishtha Shukla
- Radu Custelcean
- Rangasayee Kannan
- Sergiy Kalnaus
- Stephen Jesse
- Sudip Seal
- Sumit Bahl
- Thomas Feldhausen
- Travis Humble
- Vincent Paquit
- Ying Yang
- Yousub Lee
- Aaron Werth
- Adam Siekmann
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Miloshevsky
- Amir K Ziabari
- Amy Moore
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Annetta Burger
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Beth L Armstrong
- Bogdan Dryzhakov
- Brandon Miller
- Brian Fricke
- Brian Williams
- Bryan Lim
- Carter Christopher
- Chance C Brown
- Chengyun Hua
- Christopher Ledford
- Christopher Rouleau
- Claire Marvinney
- Clay Leach
- Craig A Bridges
- David Nuttall
- Debangshu Mukherjee
- Debraj De
- Emilio Piesciorovsky
- Femi Omitaomu
- Gabor Halasz
- Gary Hahn
- Gautam Malviya Thakur
- Georgios Polyzos
- Gerd Duscher
- Gerry Knapp
- Haowen Xu
- Harper Jordan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Gaboardi
- James Haley
- Jamieson Brechtl
- Jaswinder Sharma
- Jesse McGaha
- Jewook Park
- Jiaqiang Yan
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Kai Li
- Kevin Sparks
- Kyle Gluesenkamp
- Liam Collins
- Liangyu Qian
- Liz McBride
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nance Ericson
- Nancy Dudney
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Ondrej Dyck
- Pablo Moriano Salazar
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Philip Bingham
- Ramanan Sankaran
- Raymond Borges Hink
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Samudra Dasgupta
- Sarah Graham
- Serena Chen
- Sheng Dai
- Steven Randolph
- Sumner Harris
- Sunyong Kwon
- Todd Thomas
- Tomas Grejtak
- Utkarsh Pratiush
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Vimal Ramanuj
- Vipin Kumar
- Vivek Sujan
- Vlastimil Kunc
- Wenjun Ge
- William Peter
- Xiaobing Liu
- Xiuling Nie
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto
- Zhiming Gao

In scientific research and industrial applications, selecting the most accurate model to describe a relationship between input parameters and target characteristics of experiments is crucial.

This technology combines 3D printing and compression molding to produce high-strength, low-porosity composite articles.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.