Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- (-) User Facilities (28)
Researcher
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Costas Tsouris
- Kashif Nawaz
- Michael Kirka
- Stephen Jesse
- Vincent Paquit
- Adam Stevens
- Ahmed Hassen
- Alexander Enders
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Benjamin Lawrie
- Benjamin Manard
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Brian Post
- Charles F Weber
- Chengyun Hua
- Christopher Ledford
- Christopher Rouleau
- Christopher S Blessinger
- Clay Leach
- David Nuttall
- Debangshu Mukherjee
- Gabor Halasz
- Gerd Duscher
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- James Haley
- Jamieson Brechtl
- Jewook Park
- Jiaqiang Yan
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Junghyun Bae
- Kai Li
- Kunal Mondal
- Kyle Gluesenkamp
- Liam Collins
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Vick
- Md Inzamam Ul Haque
- Mina Yoon
- Mingyan Li
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Petro Maksymovych
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sam Hollifield
- Sarah Graham
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Thomas R Muth
- Utkarsh Pratiush
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zhiming Gao

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.

In scientific research and industrial applications, selecting the most accurate model to describe a relationship between input parameters and target characteristics of experiments is crucial.