Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- (-) User Facilities (27)
Researcher
- Soydan Ozcan
- Meghan Lamm
- Rama K Vasudevan
- Ryan Dehoff
- Vlastimil Kunc
- Ahmed Hassen
- Halil Tekinalp
- Sergei V Kalinin
- Umesh N MARATHE
- Ying Yang
- Yongtao Liu
- Katie Copenhaver
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Plotkowski
- Alex Roschli
- Alice Perrin
- Amit Shyam
- Beth L Armstrong
- Brian Post
- Dan Coughlin
- David Nuttall
- Georges Chahine
- Kashif Nawaz
- Matt Korey
- Michael Kirka
- Pum Kim
- Stephen Jesse
- Steven J Zinkle
- Vincent Paquit
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Blane Fillingim
- Bogdan Dryzhakov
- Brian Fricke
- Bruce A Pint
- Cait Clarkson
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- David S Parker
- Debangshu Mukherjee
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerd Duscher
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James A Haynes
- James Haley
- Jamieson Brechtl
- Jeremy Malmstead
- Jesse Heineman
- Jewook Park
- Jim Tobin
- Jong K Keum
- Josh Crabtree
- Kai Li
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nadim Hmeidat
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Oluwafemi Oyedeji
- Ondrej Dyck
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Sanjita Wasti
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Steve Bullock
- Steven Randolph
- Sudarsanam Babu
- Sumit Bahl
- Sumner Harris
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Utkarsh Pratiush
- Venkatakrishnan Singanallur Vaidyanathan
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Xiaobing Liu
- Yan-Ru Lin
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The technologies polymer cellulose nanocomposite mats and process for making same.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.